
APPENDIX

A. Real-World Experiment Details

1) Dataset Collection, Pretraining and Training: For the
real-world experiments, we collected the LEAP Hand dataset
and trained a model independently. We initially selected 78
daily objects from the YCB dataset [35] and ContactDB [36],
then applied the DFC-based [2] grasp optimization method
from [37] to generate 1,000 grasps per object, yielding a
total of 78,000 grasps. Following a dataset filtering process,
we obtained 24,656 grasps across 73 objects. The encoder
network was first pretrained on the original dataset, and the
entire model was then trained on the filtered dataset, as
described in Sec. III.

2) Real-World Deployment Details: We first scanned the
objects listed in Tab. IV using AR Code [38]. After camera
intrinsics [39] and extrinsics [40] calibration, we estimated
object poses using FoundationPose [41] and sampled point
cloud uniformly on their surfaces. In this tabletop grasping
setting, only top-down and side grasps are feasible, as other
palm orientations would likely collide with the table. To
address this, the model took as input the sampled object
point clouds and a batch of LEAP Hand point clouds,
which corresponded to 32 interpolated hand poses ranging
from top-down to right-side orientations, enabled by our
palm orientation control functionality. We randomly selected
one of the top-5 grasps from the generated batch, ranked
according to the same grasp energy calculation used during
dataset generation [37]. We then use MPLib [42] for arm
motion planning to the desired end-effector pose. A PD
controller is applied for grasp execution.

3) Experiment Result: We tested 10 objects with various
shapes, performing 10 grasping attempts for each object. The
experimental results are shown in Tab. IV and Fig. 8. Our
method achieved an average success rate of 89% across these
10 objects, demonstrating the effectiveness of our method in
dexterous grasping and its generalizability to novel objects.

Apple Bag Brush Cookie Box Cube
9/10 10/10 9/10 10/10 9/10

Cup Dinosaur Duck Tea Box Toilet Cleaner
7/10 9/10 8/10 8/10 10/10

TABLE IV: Real-world experiment results on unseen
objects.

B. Zero-shot Generalization to Novel Hands Experiment

We trained the model separately on each of the three
robotic hands and then validated it on the others without
further training. As shown in Tab. V, the results indicate
that when transferring from high-DOF hands to low-DOF
hands in a zero-shot setting, the model retains a certain
level of performance. However, transferring in the opposite
direction largely fails. We hypothesize that this difference
arises because high-DOF hands have a much more complex
configuration space, allowing the model to learn a broader

range of articulation-invariant matching tasks, which can
still perform well on the simpler articulation-invariant tasks
required for low-DOF hands. In contrast, the configuration
space of low-DOF hands is relatively simple, and when
trained on these hands, the model can only master simple
articulation-invariant matching tasks.

Training
Robot

Success Rate (%) ↑
Allegro Barrett ShadowHand

Allegro (88.70) 83.60 1.10
Barrett 42.40 (84.80) 6.90

Shadowhand 56.90 83.70 (75.80)

TABLE V: Generalization results to novel hands.

Fig. 9: Grasp examples with partial object point clouds. Red
points show the observed portion.

C. Partial Object Point Cloud Sampling
Given the mesh of an object, we begin by randomly

sampling 2×NO points. Next, a point is randomly sampled
on a unit sphere, and the direction vector r from this point to
the origin is computed. For each point in the point cloud, we
calculate the dot product between r and the corresponding
direction vectors di. We then remove half of the points with
the smallest dot product values r · di, leaving a subset of
NO points, which forms the partial object point cloud. This
process is used to generate random point clouds during both
training and evaluation.

D. Grasp Controller

Fig. 10: Visualization of the grasp controller’s effect: blue
indicates the predicted grasp pose, orange represents qouter,
and pink represents qinner.

To mitigate minor inaccuracies and subtle penetrations
commonly found in generative methods, as well as the
limitations of directly predicting a static grasp pose—which
overlooks the forces exerted on contact surfaces—we de-
veloped a heuristic grasp controller to better simulate real-
world grasping scenarios. The controller aims to generate a



(a) Apple (b) Bag (c) Brush (d) Cookie Box (e) Cube

(f) Cup (g) Dinosaur (h) Duck (i) Tea Box (j) Toilet Cleaner

Fig. 8: Real-world grasp demonstrations

configuration qouter that is farther from the object’s center of
mass and a configuration qinner that is closer to the center
of mass, based on the predicted pose. Fig. 10 illustrates the
impact of the grasp controller.

1) Evaluation Metric Details: In Isaac Gym, we evaluate
the success of a grasp through a two-phase process. First,
in the grasp phase, we use the previously described grasp
controller to compute qouter and qinner. We set the robot joint
position to qouter with a position target at qinner. Then we
simulate for 1 second, equivalent to 100 simulation steps
for the hand to close and grasp. In the second phase, we
apply disturbance forces sequentially along six orthogonal
directions, following the method in [12]. These forces are
defined as:

F±xyz = 0.5m/s2 ×mobject (15)

where mobject denotes the mass of the object.
Our approach improves upon [12] by introducing a dy-

namic grasp phase, transitioning the evaluation from static
to dynamic, and thereby significantly enhancing the rigor
of the evaluation metric. In the original static validation,
some grasps could hold objects in unstable positions. By
introducing dynamic validation, these unstable grasps are less
likely to succeed, resulting in a more stringent and accurate
assessment of grasp quality. Moreover, static validation is
prone to simulation errors, such as object penetration or
robot self-collisions, which can incorrectly classify unstable
grasps as successful. The dynamic method alleviates these
issues, providing a more robust and reliable evaluation of
grasp success.

Fig. 11 illustrates several anomalous grasps that, despite
appearing to fail, could still be judged as successful under
the static metric. These grasps, either in an unstable state
or exhibiting significant self-penetration, are impractical for
real-world applications, highlighting the limitations of static
validation.

2) Dataset Filtering: To address the suboptimal grasp
quality, we applied a filtering process to the CMap-

Fig. 11: Grasp examples filtered out from the dataset that
would otherwise be deemed successful under static metric.

Dataset [12]. Specifically, each grasp in the dataset was
evaluated based on the success metrics defined in Sec. IV-A
and Appendix D.1. We then store the relative 6D pose and
joint values of every successful grasp in the filtered dataset.

E. Baseline Description

1) DFC [2]: Since DFC is a purely optimization-based
method, the speed of generating grasps is particularly slow.
Therefore, we evaluate it using the original CMapDataset,
which was primarily generated by the DFC method. As the
dataset generation process also minimizes the hand prior
energy and penetration energy described in [12], and some
generated grasps may have already been filtered, the evalua-
tion results are likely better than DFC’s actual performance.

2) GenDexGrasp [12]: We used the filtered grasp dataset
to train the model, where the contact heatmap was generated
using the aligned distance as described in the paper. The
GenDexGrasp model was trained with default hyperparam-
eters. In Tab. VI, we compared the results of the open-
source pretrained model with those of our trained model,
demonstrating that our filtered dataset is of higher quality.

3) ManiFM [13]: Due to the unavailability of pretrained
models for Barrett and ShadowHand, our evaluation was
restricted to the Allegro pretrained model. Considering the
fundamental differences between point-contact and surface-
contact grasps, we optimized the controller’s hyperparame-
ters for improved performance of ManiFM. Nevertheless, de-
spite the seemingly high quality of the generated grasps, the



Method
Success Rate (%) ↑

Allegro Barrett ShadowHand Avg.

pretrain 51.00 63.80 44.50 53.10
train 51.00 67.00 54.20 57.40

TABLE VI: GenDexGrasp Result Comparision

inherent instability of point-contact grasps posed significant
challenges in achieving a high success rate during simulation.

4) GeoMatch [10]: Although GeoMatch is a keypoint
matching-based method that supports cross-embodiment and
shares similarities with our approach, we faced challenges
in reproducing its results due to the absence of pretrained
models and insufficient details regarding the data file for-
mats, which remained unsolved in its repository’s issues as
well. Consequently, it was not included as a baseline for
comparison.

F. Network Architecture

1) Point Cloud Encoder: To map robot and object features
into a shared feature space, enhancing the network’s ability to
learn correspondences between them, we employed identical
architectures for both the robot and object encoders. Our
encoder design is based on the DGCNN [27] architecture, as
implemented in [30]. Notably, this implementation omits the
original layer-wise re-computation of K-nearest neighbors
(KNN) for graph construction, resulting in a “Static Graph
CNN”. In our setup, K is set to 32, meaning that each point’s
receptive field is much smaller than the total number of
points in the cloud (NR = 512). This constraint limits the
ability of the per-point feature extraction process to capture
global information, which poses a challenge for the object
encoder, as it struggles to learn comprehensive geometric
shape features.

We experimented with the original dynamic graph struc-
ture, but it led to a decline in pretraining performance.
We hypothesize that, for configuration-invariant learning
objectives, local structural information in the point cloud is
critical, and the network needs to be reinforced to capture
this. The dynamic graph structure tends to learn similar
structures across different fingers, which, while beneficial
for segmentation tasks, is less suited to our specific learning
goals. The impact of varying network architectures and
feature learning strategies will be further explored in future
work.

Consequently, our encoder follows a “Static Graph CNN”
architecture with five convolutional layers. After the last
convolution, a global average pooling layer generates a
global feature concatenated with features from all previous
layers. This combined output is passed through a final convo-
lutional layer, projecting into the embedding dimension. The
architecture is illustrated in Fig. 12, where the LeakyReLU
activation function uses a negative slope of 0.2.

2) Cross-Attention Transformer: We followed the archi-
tectural design from [30], utilizing a multi-head attention

Fig. 12: Point cloud encoder architecture.

block with 4 heads. The implementation details can be found
in the code.

3) Kernel MLP: We adopted the same hyperparameters
design as [30]. Specifically, the MLP consists of two hidden
layers with feature dimensions of 300 and 100, respectively,
along with the ReLU activation function.

G. Dataset Preprocessing

1) URDF File Preprocessing: To facilitate optimization,
we introduce six virtual joints between the world frame
and the robot’s root link: three prismatic joints representing
translation (x, y, z) and three revolute joints representing
rotation (roll, pitch, yaw). These virtual joints are incor-
porated into the robot’s URDF file and treated equivalently
to other joints to simplify the computation of the Jacobian
matrix. Furthermore, virtual links are added to the distal ends
of each tip link to address potential errors in the 6D pose
during optimization, ensuring consistent constraints across
all links despite reduced rotational restrictions.

2) Robot Point Cloud Sampling: To extract the stored
point clouds {Pℓi}

Nℓ

i=1 from the URDF file of a specific
robot, we first sample 512 points from the mesh of each link.
We then apply the Farthest Point Sampling (FPS) algorithm
to the complete point cloud, selecting 512 points, denoted as
NR in our method. These point clouds are stored separately
for each distinct link.

This process guarantees that, for any joint con-
figuration, our point cloud forward kinematics model,
FK
(
q, {Pℓi}

Nℓ

i=1

)
, can map joint configurations to corre-

sponding point clouds at new poses. This ensures consistent
point cloud correspondence across different poses, a key
advantage for our pretraining methodology.

3) Object Point Cloud Sampling: Starting with the mesh
file of an object, we initially sample 65,536 points. For each
training iteration, we randomly select 512 points from this set
and apply Gaussian noiseN (0, 0.002) for data augmentation.
This strategy improves the model’s generalization across
different object shapes.

H. Matrix Block Computation

To address the high GPU memory demands of using the
MLP kernel function to compute D(R,O), we implemented
a matrix block computation strategy to optimize memory
usage. After experimentation, we ultimately chose to divide
the entire matrix into 4 × 4 blocks for computation, which
reduces memory consumption by approximately 34% while
maintaining similar computation time.


	Appendix
	Real-World Experiment Details
	Dataset Collection, Pretraining and Training
	Real-World Deployment Details
	Experiment Result

	Zero-shot Generalization to Novel Hands Experiment
	Partial Object Point Cloud Sampling
	Grasp Controller
	Evaluation Metric Details
	Dataset Filtering

	Baseline Description
	DFC dfc
	GenDexGrasp li2023gendexgrasp
	ManiFM xu2024manifoundation
	GeoMatch attarian2023geometry

	Network Architecture
	Point Cloud Encoder
	Cross-Attention Transformer
	Kernel MLP

	Dataset Preprocessing
	URDF File Preprocessing
	Robot Point Cloud Sampling
	Object Point Cloud Sampling

	Matrix Block Computation


