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Fig. 1: TelePreview is a user-friendly teleoperation system enabling the real-time virtual preview before robot execution.

Abstract— Teleoperation provides an effective way to collect
robot data, which is crucial for learning from demonstrations.
In this field, teleoperation faces several key challenges: user-
friendliness for new users, safety assurance, and transferability
across different platforms. While collecting real robot dexterous
manipulation data by teleoperation to train robots has shown
impressive results on diverse tasks, due to the morphological
differences between human and robot hands, it is not only
hard for new users to understand the action mapping but also
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raises potential safety concerns during operation. To address
these limitations, we introduce TelePreview. This teleoperation
system offers real-time visual feedback on robot actions based
on human user inputs, with a total hardware cost of less than
$1,000. TelePreview allows the user to see a virtual robot
that represents the outcome of the user’s next movement.
By enabling flexible switching between command visualization
and actual execution, this system helps new users learn how
to demonstrate quickly and safely. We demonstrate that it
outperforms other teleoperation systems across five tasks,
emphasize its ease of use, and highlight its straightforward
deployment across diverse robotic platforms. We release our
code and a deployment document on our website https:
//nus-lins-lab.github.io/telepreview/.

I. INTRODUCTION

Researchers have long recognized teleoperation as an
essential component for gathering on-robot data used in

https://nus-lins-lab.github.io/telepreview/
https://nus-lins-lab.github.io/telepreview/


Fig. 2: Overview of the TelePreview System Architecture: Our system consists of three main components: (1) Various
input devices, including RGB-D cameras, IMU mocap suits, VR headsets, mocap gloves, AR hand tracking, and EMG
armbands for capturing human motion; (2) A central processing pipeline that uses SMPL-X as a standard to process wrist
and hand pose data, feeding into our Preview System with joint-to-joint mapping and a non-collision retargeting network;
(3) Support for different robot platforms as output devices for executing the mapped movements.

learning from demonstrations [1]–[12]. An intuitive and
user-friendly teleoperation system is crucial for collecting
high-quality, diverse, and scalable data. However, effectively
controlling robots with dexterous hands remains a significant
challenge. The fundamental differences between human and
robotic hands make the direct mapping of human movements
to robotic actions exceptionally complex. These inherent
structural and functional disparities, combined with the preci-
sion required for fine-grained tasks, often result in inefficient
and potentially compromised data collection processes.

Existing teleoperation systems face three significant chal-
lenges. First, new users often struggle to control the robot
effectively due to the lack of intuitive feedback on how
their commands translate to robot actions, especially dur-
ing complex manipulation tasks. Second, without proper
safeguards and real-time guidance, users may inadvertently
issue unsafe commands that could damage the robot or its
surroundings. Third, most current systems are tightly coupled
with specific input devices or robot platforms, limiting their
adaptability. These challenges significantly impact the quality
and efficiency of data collection for robot learning.

To address these issues, we introduce TelePreview, a
teleoperation system that delivers precise control while main-
taining affordability through its sub-$1,000 hardware setup,
as shown in Fig. 2. At its core, TelePreview provides an
interface that overlays a virtual robotic arm onto the real-
world scene, enabling users to preview motions. Precisely,
a foot pedal or other external signal IO allows for mode
switching between preview (virtual-only) and align (physical
action alignment) modes. In preview mode, users can verify
and refine their intended actions with a virtual robot arm that
is spatially aligned with the physical robot, ensuring that the
final commands are safe and accurate once applied in the
real world.

We present the significant contributions of TelePreview to

advance teleoperation:
• Interactive Visual Assistance: We develop a visual-

ization interface that enables users to preview intended
actions before execution, enhancing teleoperation pre-
cision and accessibility for both new and experienced
users during complex tasks.

• Low-Cost System: We introduce an economical yet
high-performance teleoperation solution that integrates
inertial motion capture technology and mocap gloves
at a total hardware cost of under $1,000, making it
affordable for research.

• Easy Adaptation to New Hardware: We design our
approach so that migrating to different input or output
devices requires adjusting only a small set of physi-
cally interpretable parameters, ensuring robust adapta-
tion across diverse hardware setups.

II. RELATED WORK

A. Robot Teleoperation Frameworks for Manipulation

The growing interest in training robots through imitation
learning has driven the need for extensive, high-quality real
robot datasets. Teleoperation provides an efficient method
for demonstrating and recording intricate robotic tasks [13]–
[15]. Researchers have explored various teleoperation sys-
tems, including VR controllers [1]–[3], motion capture [16]–
[18], wearable gloves [11], [19]–[21], exoskeletons [22],
[23], each offering distinct benefits in terms of accessibility,
precision, and generalizability.

Vision-based teleoperation systems [6] typically employ
RGB or RGB-D cameras to detect hand poses. The hand
pose retargeting module maps the human hand pose data
obtained from perception algorithms into joint positions
of the dexterous hand. We formulate this process as an
optimization problem that minimizes the difference between
the key point vectors of the human hand and the dexterous



Fig. 3: Pipeline of Our Modules: The system tracks user wrist and hand poses, maps them to robot joint configurations
through joint-to-joint mapping and non-collision retargeting, and provides visual preview before physical execution. We
achieve precise alignment between virtual and physical robots through AprilTag calibration.

hand. To generate the end-effector motions, 3D positions of
key points in the camera frame are calculated by using an
RGB-D camera. The wrist pose is then computed by keypoint
positions in the local wrist frame and global camera frame
using the Perspective-n-Point (PnP) algorithm.

Although vision-based teleoperation systems offer a rel-
atively low-cost solution [1]–[3], [6], they face significant
challenges, including limited degrees of freedom (DoFs),
constrained reachable workspace, and high computational
demands. This limitation stems from the requirement of
vision-based approaches for operators to keep their hands
within the camera’s field of view, thereby restricting the
action space of the human hand. Although increasing the
scale factor can amplify end-effector movement and expand
the action space of the robot, it aggravates the difficulty for
operators in performing fine-grained tasks. These approaches
also struggle to handle scenarios where fingers overlap. The
extra keypoint retargeting module can be computationally
expensive in real-time. Although specialized hardware [4]
can improve accuracy, it substantially increases system costs.
Our proposed system directly uses the joint pose obtained
from the motion capture suit and data gloves, preventing the
deviation of vision-based systems and reducing the computa-
tional cost. Recent unified teleoperation frameworks attempt
to address these limitations but often introduce new trade-
offs. Some approaches [3], [6] prioritize implementation
simplicity by tracking only fingertip positions rather than
enabling detailed joint-level control. Furthermore, your cus-
tomization options typically require time-consuming manual

parameter tuning that requires significant expertise.

B. Visual Feedback in Teleoperation Systems

Visual feedback plays a crucial role in teleoperation sys-
tems by providing users with spatial awareness and task-
relevant information. Traditional approaches primarily rely
on real-time camera feeds [24], [25], which can be limited by
occlusions and restricted viewing angles. Moreover, the lack
of preview capabilities for intended commands leaves users
(especially new users) uncertain about the robot’s response,
which can increase error rates and user fatigue.

To address these limitations, researchers have explored
enhanced visualization techniques [26]–[30] that overlay vir-
tual information on the workspace view. Even though these
approaches improve user perception by displaying planned
trajectories and environmental constraints, they primarily
design and visualize AR objects for a specific task, such as a
pink box with dimensions of 10 cm × 10 cm × 10 cm. Any
changes to the object’s attributes (e.g., dimensions, color, or
type) invalidate the preconfigured AR object, so the system
must rebuild it to match the new characteristics.

Instead of visualizing the manipulated objects, our system
provides an AR representation of the robot that directly maps
operator commands. This design ensures safety for new users
who may be unfamiliar with how the robot responds to
their inputs. Our configuration allows users to use their own
URDF file, eliminating the need to reconstruct manipulated
objects for every new task.



III. SYSTEM OVERVIEW

Our system offers an integrated workflow for controlling
robot movements with both precision and safety, leveraging
low-cost hardware (under $1,000) and diverse input devices.
This workflow comprises two complementary modules:

1) Teleoperation Module: Includes a teleoperation
pipeline for robust motion retargeting.

2) Preview-Based Module: Allows operators to check in-
tended movements in a virtual setting before execution.

As illustrated in Fig. 3, the teleoperation module (Sec-
tion V) offers a safe and intuitive pipeline that proceeds in
three stages:

1) Wrist pose estimation via IMU-based tracking (Sec-
tion IV-A),

2) Hand pose estimation using a motion capture glove
(Section IV-B),

3) Non-collision retargeting to ensure safe joint configu-
rations (Section IV-C).

Together, these components collectively enable an efficient
mapping from human motion to robot commands. Moreover,
by adopting SMPL-X (Section IV-A.1) as a standardized
representation of the human body, our pipeline can seam-
lessly integrate data from any input device conforming to
this format.

Additionally, as illustrated in Fig. 3, the preview-based
module (Section V) then provides a safe and intuitive pipeline
that proceeds in three stages:

1) The preview robot is aligned with the physical robot
using AprilTag markers [31] (Section V-B.1).

2) User commands are visualized on the aligned preview
robot (Section V-B.2).

3) Once the I/O state transitions from active to inactive,
the final preview pose is captured and converted into
an optimal trajectory for actual execution (Section V-
B.3).

This preview-then-execute scheme reduces errors and
protects the robot and its surroundings by allowing users
to visualize and refine their actions beforehand. Thus, it
substantially improves efficiency and safety.

IV. TELEOPERATION PIPELINE

A. Wrist Pose Estimation

Our system tracks the human operator’s wrist motion to
enable intuitive robot teleoperation. The input consists of
raw IMU sensor data from sensors attached to the operator’s
arm, while the output is the 6-DoF wrist pose (position
and orientation) in world coordinates. This wrist pose serves
as the primary control signal for the robot’s end-effector,
allowing natural mapping between human arm movements
and robot motion.

1) SMPL-X Standard: We adopt the SMPL-X standard
[32] as our standard representation of the human body. The
SMPL-X model represents a kinematic tree with standardized
joint coordinate systems, where each joint’s pose describes
a rotation and translation relative to its parent frame. This

hierarchical structure enables consistent pose representation
across different motion capture devices and simplifies the
integration with our TelePreview system.

2) IMU-based Tracking System: IMU-based motion cap-
ture offers robust tracking regardless of visual conditions and
occlusions. Following the SMPL-X convention, we define the
world frame system at the midpoint between the feet. All
positions and orientations in this paper are expressed in this
coordinate system unless otherwise specified. After obtaining
the SMPL-X model, we compute the wrist position pw ∈ R3

and orientation Rw ∈ SO(3) relative to this world frame.
Based on the wrist parameters, we map the user’s wrist

pose to the end-effector pose through a transformation
function T . Specifically, we use the relative wrist position
to control the end-effector position and the absolute wrist
orientation to control the end-effector orientation:

pe(t) = pe(0) + (pw(t)− pw(0)), Re(t) = Rw(t), (1)

where pe(t) and Re(t) represent the end-effector position
and orientation at time t, and pw(t) and Rw(t) represent
the user’s wrist position and orientation at time t.

B. Hand Pose Estimation

Mocap gloves [33] offer direct joint angle measurements
{qi}27i=1 using flex sensors. Our joint-to-joint mapping ap-
proach provides a generalizable solution for retargeting high-
dimensional human hand motion data to lower-dimensional
robotic systems. This approach is particularly effective when
the input space (e.g., the human hand with 27 DoF) has
higher dimensionality than the target space (e.g., the robotic
hand with 16 DoF), as it allows selective mapping of the
most intuitive and task-relevant degrees of freedom. Through
manual selection of corresponding joints based on human
intuition and task requirements, followed by range alignment
between input and output spaces, we maintain natural and
predictable motion correspondence.

We propose a direct joint-to-joint mapping function M :
R27 → R16 that transforms mocap glove readings to LEAP
hand [34] joint configurations. Let qg ∈ R27 denote the glove
joint values and qr ∈ R16 denote the robot joint values. For
each robot joint i, we define a mapping:

qir = fi(q
ki
g ), i ∈ 1, . . . , 16, (2)

where ki is the corresponding glove joint index for robot joint
i which is manually picked, and fi is a linear transformation:

fi(x) = si(x− bi)ri. (3)

Here, si ∈ R+ is a scaling factor that normalizes the joint
ranges, bi ∈ R is a bias term that aligns the neutral positions,
and ri ∈ {-1,1} is a direction indicator that ensures consistent
joint rotations. This mapping guarantees:

max qk
i

g ⇔ max qir, min qk
i

g ⇔ min qir, (4)

Where qg and qr represent the joint angles of the glove and
the Leap Hand, respectively, and max and min denote their
upper and lower joint limits.



(a) Current Retargeting Method [6] Causes Collision.

(b) Our Self-collision Avoidance Retargeting.

Fig. 4: Comparison of Hand Configuration Retargeting
Methods: (a) shows the direct mapping between human
and robot hands leading to self-collision; (b) demonstrates
our collision-aware retargeting approach that maintains safe
configurations.

C. Non-Collision Retargeting Network

Direct mapping from human hand postures to robotic
hands using existing retargeting approaches like [6] can result
in self-collisions, as demonstrated in Fig. 4a. While tradi-
tional retargeting methods can achieve real-time performance
for simpler end-effectors, they rely on optimization-based
approaches that become computationally intensive for high-
DoF configurations.

To address these challenges, we develop a learning-based
framework with two key components:

1) A Self-Collision Prediction Network (CPN) that takes
robot joint configurations q ∈ Rn as input and outputs
a binary collision probability vector p ∈ Rm indicating
collision likelihood for each link.

2) A Configuration Correction Network (CCN) that maps
collision-prone joint configurations to their nearest
collision-free counterparts. Specifically, it transforms
an invalid robot configuration qinvalid ∈ Rn to a
valid configuration qvalid ∈ Rn that minimizes both
collision risk and deviation from the original pose.

As demonstrated in Fig. 4b, our method successfully trans-
forms problematic configurations into stable, safe positions
while maintaining efficient real-time performance (about
60Hz).

V. PREVIEW PIPELINE

A. Why Preview System Assistance?

Traditional teleoperation approaches face significant chal-
lenges in data quality when collecting demonstrations for
imitation learning. During complex manipulation tasks, users
frequently make exploratory movements that contaminate
the demonstration data with sub-optimal trajectories. These

repeated probing actions to locate the socket edge and refine
the approach angle before successful insertion introduced
significant noise into the collected datasets. Such noise
is particularly problematic for training imitation learning
models, which benefit most from clean, purposeful demon-
strations rather than trajectories cluttered with exploratory
movements.

To address these limitations and provide a more efficient
workflow, we propose incorporating a dedicated preview
feature that allows users to refine their actions before phys-
ical execution. By separating exploration from the final
command, our approach reduces sub-optimal motions that
would otherwise degrade data quality.

B. Technical Implementation of Preview System

We design our preview feature to integrate seamlessly
with the teleoperation workflow. It requires three critical
elements: (1) precise spatial calibration to maintain align-
ment between the virtual preview and the physical robot, (2)
realistic rendering to blend the preview with camera feeds,
and (3) state management to handle transitions between
preview and execution phases. The following subsections
detail each of these technical components, highlighting how
they collectively enable users to view and adjust planned
motions prior to committing them to the physical robot.

1) Spatial Alignment Using AprilTag: To maintain a pre-
cise spatial alignment between the preview and the physical
robot in the camera viewpoints, we implement a robust
calibration system using AprilTags [31]. Our approach in-
volves two sequential steps: (1) a hand-eye calibration that
establishes the transformation between the robot’s base frame
and the fixed camera frame, and (2) AprilTag pose detection
that enables real-time tracking of the robot’s position and
orientation relative to each camera view. This chain of trans-
formations ensures consistent preview visualization across
different viewpoints.

Fig. 5: Our Transformation Relationship: The number in
the circle denotes the order of transformation acquisition.

As shown in Fig. 5, our calibration procedure involves
multiple sequential transformations. We begin with hand-
eye calibration of the fixed top-view camera (1), followed



by detecting the AprilTag’s pose from this camera’s per-
spective (2). Using these relationships, we can compute the
transformation between the AprilTag and the robot base
frame (2). For the additional floating third-view camera,
we first detect the AprilTag pose from its viewpoint (3),
which then allows us to establish its position relative to the
robot base frame through the standard AprilTag reference
(3). This chain of transformations ensures consistent preview
visualization regardless of camera movement or viewpoint
changes, making our system robust for dynamic viewing
scenarios.

2) Visual Preview Visualization: Building upon this spa-
tial alignment system, we implement the visual component
of our preview system. As shown in Fig. 6a, we use the
pyrender [35] library to render the virtual robot through
the previous float camera. The rendered preview image is
then composited with the actual camera feed using alpha
blending, creating a seamless overlay where the virtual robot
appears naturally integrated with the physical environment.
This visualization approach requires careful calibration of
the virtual camera parameters to match the physical cameras,
ensuring that the preview accurately reflects the robot’s in-
tended configuration in the workspace. The resulting overlay
provides users with an intuitive preview of planned mo-
tions. Our preview system also supports multiple viewpoints
to enhance spatial awareness during complex manipulation
tasks. As shown in Fig. 6b and Fig. 6c, we deploy cameras
to capture both third-person and top-down views of the
workspace, allowing users to verify planned movements from
complementary perspectives.

(a) Preview Rendering

(b) Third-person View (c) Top-down View

Fig. 6: Rendering and Multi-view Visualization System.

3) IO Control for Preview Visualization: Our system
uses a foot pedal as an intuitive control interface for state
transitions. As shown in Fig. 7, when the IO is activated,
the physical robot stops while the preview appears and
responds to user commands for motion preview (Preview
Mode). Upon IO deactivation, the preview disappears, and
the system extracts its final configuration as the target pose
to align, bypassing any exploratory movements made during

the preview (Align Mode). This target is then processed by
the mplib motion planning library [37] to generate an optimal
trajectory for execution. After reaching the target pose, the
robot automatically resumes real-time teleoperation until the
next IO is activated. This workflow ensures users execute
only refined, intentional movements, eliminating exploratory
motions from demonstration data.

Fig. 7: State Transition of Preview Control

VI. EXPERIMENTS

Our experiments aim to address the following questions:
Q1: How effective is TelePreview vs. Baselines?
Q2: How beneficial is TelePreview for new users?
Q3: How adaptable is TelePreview for new hardware?

A. Experiment Setup

TelePreview integrates several key components. We cap-
ture the user’s movements via an inertial motion capture
suit [38] and a pair of strain-gauge-based mocap gloves
[33], providing high-fidelity joint angle data for both body
posture and delicate hand movements. To visualize robot
action before execution, we employ a RealSense RGB-D
camera and render the preview either on a standard 2D
display or within a VR headset (e.g., Meta Quest 3 [39]). For
the physical hardware, we use a UFactory xArm-6 robotic
arm [40] outfitted with a Leap hand [34], utilizing AprilTag
[31] to align the initial poses of the preview and the real
robot.

Following the methodology outlined in [6], [36], users
attempted each task 10 times. We reference the baseline
success rates from their papers.

B. Task Descriptions

We test TelePreview on five real-world tasks, each high-
lighting different manipulation challenges:

• Pick & Place: Grasp an object and place it at precise
locations.

• Pour: Tilt and rotate a cup to pour the beans into
another container.

• Hang: Hang a spoon on a peg, requiring both fine
positioning and subtle wrist rotations.

• Box Rotation: Rotate a box to change its orientation.
• Cup Stacking: Stack a cup onto another cup.

C. Evaluation Metrics

We measure two key metrics for each task:
• Success Rate: We define the success rate as the pro-

portion of times the operator completes the task within



Task TelePreview Open Teach [3] AnyTeleop [6] Telekinesis [36]

Pick & Place 1.0 0.8 1.0 0.9
Hang 0.9 - - -
Pour 1.0 0.8 0.7 0.7
Box Rotation 1.0 - 0.6 0.6
Cup Stacking 1.0 - 0.7 0.3

TABLE I: Real Robot Teleoperation Results. We use the success rates the baseline methods report in their papers, marking
tasks they did not attempt or do not support with “-”. Success rates for Open Teach [3] reflect expert performance.

Task
Success Rate Average Success Execution Time (s)

w/o preview w/ preview Difference ↑ w/o preview w/ preview Difference ↓

Pick & Place 0.6 1.0 +0.4 23.56 13.55 -10.01
Hang 0.6 1.0 +0.4 29.30 30.83 +1.53
Pour 0.9 0.8 -0.1 43.20 36.13 -7.07
Box Rotation 0.6 0.8 +0.2 30.47 19.12 -11.35
Cup Stacking 0.5 1.0 +0.5 31.54 18.91 -12.63

TABLE II: Effect of Preview Assistance on New User Performance.

the given constraints. For example, if the user attempts
a cup-hanging task X times and successfully hangs the
cup on the rack Y times, the success rate is Y

X .
• Execution Time: The total duration from task initiation

to successful completion (i.e., the length of the recorded
demo episode).

D. Performance Comparison with Baselines (Q1)

To address Q1—evaluating how our approach compares
to existing teleoperation methods—we measure the actual
robot performance of TelePreview against three baselines:
Telekinesis [36], AnyTeleop [6], and Open Teach [3]. For
fairness and consistency, an expert user operates each method
and tests it on the five tasks described in Section VI-B. The
primary metrics are success rate and average execution time.

As summarized in Table I, TelePreview achieves
higher success rates than all baselines. While Telekinesis,
AnyTeleop, and Open Teach handle simpler, short-horizon
tasks, they often struggle with complex manipulations re-
quiring subtle wrist rotations and fine-grained positioning
(e.g., the Hang task). TelePreview, by contrast, captures
these nuances more effectively, reflecting stronger over-
all performance and versatility. These findings demonstrate
TelePreview’s ability to address a broad spectrum of real-
world challenges, from basic pick-and-place operations to
more intricate tasks involving delicate movements.

(a) LEAP Hand (b) Gripper

Fig. 8: Deployment on Different Robots.

E. Effect of Preview for Users (Q2)

To investigate Q2—how the preview feature benefits new
(non-expert) users—we evaluate both success rate and aver-
age execution time in two conditions: (1) with the preview
enabled and (2) with the preview disabled. The same five
tasks from Section VI-B are attempted by new users, with
each task repeated 10 times.

As shown in Table II, enabling the preview boosts user
performance. Success rates increase across all tasks, with
especially notable gains in challenging manipulations such
as cup stacking (+0.5) and pick & place (+0.4). Moreover,
average execution times drop by up to 12.63 seconds (cup
stacking), demonstrating not only improved accuracy but
also greater efficiency. By visualizing a virtual “preview”
of the robot’s intended motion and confirming the final
pose prior to executing physical movements, users eliminate
the need for exploratory motions in the actual workspace.
This design ensures that recorded trajectories contain only
intentional, task-oriented actions without extraneous trial-
and-error, providing cleaner, high-quality demonstrations for
imitation learning. As a result, TelePreview delivers both a
more intuitive teleoperation experience and more consistent
data for downstream training.

F. Deployment on Various Robots (Q3)

We deploy our TelePreview system on a Ufactory
xArm [40] equipped with both a LEAP hand [34] and a
parallel gripper. By updating only the kinematic parameters
and transformation chain for each end-effector, TelePreview
preserves its full functionality across diverse setups, as shown
in Fig. 8. This successful deployment on multiple end-
effector configurations illustrates the system’s adaptability to
new hardware. Its modular design allows users to seamlessly
integrate TelePreview into different robotic platforms while
retaining all key features—preview, multi-view visualization,
and intuitive control interfaces.



VII. CONCLUSION

In this paper, we presented TelePreview, a low-cost tele-
operation system featuring AR preview feedback designed
for deployment across diverse robotic platforms. Our ex-
periments demonstrate that TelePreview offers sufficient
flexibility and safety to successfully perform a variety of
fine-grained tasks. TelePreview provides immediate, robot-
centric feedback that enables users to preview and refine their
commands before physical execution.

While our results show promising advances in teleoper-
ation interfaces, a key limitation is the visual ambiguity
caused by occlusions between the preview robot and scene
objects. Future work could address this by incorporating
depth information from RGB-D cameras to create more
accurate spatial relationships between virtual and physical
elements.
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APPENDIX

A. Technical Implementation of Pos-to-Pos Non-Collision
Module

Due to differences in action space and limitations in the
precision of the retargeting algorithm, the configuration of a
dexterous robotic hand often generates invalid self-collision
configurations. These invalid configurations not only lack
operational utility but also risk system failure or hardware
damage. To address this issue, we propose a method for map-
ping invalid configurations to their closest valid counterparts,
enabling recovery from self-collision scenarios.

Fig. 9: Pipeline of the Non-collision Module

Fig. 9 illustrates our pos2pos implementation pipeline,
which consists of several interconnected components for
handling robot hand configurations.

1) Self-Collision Prediction Network (CPN): To facilitate
the transformation from invalid to valid configurations, we
first develop a Self-Collision Prediction Network (CPN).
The primary objective of CPN is to predict the likelihood of
self-collision for each link within a given joint configuration.

The training dataset is generated by uniformly sampling
n configurations from the robot’s action space. For each
sampled configuration, the system employs forward kinemat-
ics (FK) to compute the robot’s pose. A collision detection
algorithm (e.g., geometric or physics-based) then checks the
pose to derive m collision labels for the links. Each label
indicates whether a link is in a collision state.

The CPN takes joint configurations as input and outputs
collision probabilities for all joints. We train the network
using the binary cross-entropy (BCE) loss function, defined
as:

LCPN =
1

m

m∑
i=1

BCE(pi, ti), (5)

where pi and ti represent the predicted and true collision
probabilities, respectively.

2) Invalid Configuration Correction Network (CCN):
Building on the CPN, we introduce an Invalid Configura-
tion Correction Network (CCN) to map invalid configura-
tions to valid ones. The CCN takes an invalid configuration
as input and outputs a corrected configuration that minimizes
collision risks while closely resembling the original input.

The CCN training process minimizes a composite loss
function comprising two components:

• Mean Squared Error (MSE) Loss: Ensures the cor-
rected configuration closely resembles the original con-
figuration.

LMSE =
1

n

n∑
i=1

(q̂i − qi)
2, (6)

where qi and q̂i denote the original and corrected joint
configurations, respectively.

• Collision Probability Loss: Leverages the CPN to
compute the mean collision probability of the corrected
configuration and aims to minimize this value.

LCollision =
1

m

m∑
i=1

pi(q̂), (7)

where pi(q̂) represents the collision probability of joint
i in the corrected configuration q̂.

We define the total loss function as:

L = αLMSE + βLCollision, (8)

where α and β are hyperparameters balancing the two loss
components.

3) Explanation and Optimization Strategy: The loss terms
in the proposed framework serve distinct roles:

• LMSE ensures the corrected configuration retains conti-
nuity with the original input.

• LCollision minimizes the likelihood of self-collision in the
corrected configuration.

• The hyperparameters α and β significantly influence the
training outcomes, and we optimize their values through
grid search.

The CCN employs a fully connected multi-layer per-
ceptron (MLP) architecture. The input is the invalid joint
configuration q, and the output is the corrected configuration
q̂. We train the model using the Adam optimizer with a
learning rate η and monitor convergence via the collision
rate on a validation dataset.

4) Summary: By integrating the CPN and CCN, we
efficiently transform invalid self-collision configurations into
valid ones. This approach ensures the validity and continuity
of robotic configurations, laying a robust foundation for
subsequent task execution.

B. Visualization of our tasks

We visualize the execution process of our five manipula-
tion tasks in Figure 10-14. They demonstrate the execution
sequences of five manipulation tasks: picking and placing
a cup, hanging a spoon on a peg, pouring beans between
containers, rotating a box, and stacking cups.



(a) (b) (c) (d) (e)

Fig. 10: Pick&Place Visualization

(a) (b) (c) (d) (e)

Fig. 11: Hang Visualization

(a) (b) (c) (d) (e)

Fig. 12: Pour Visualization

(a) (b) (c) (d) (e)

Fig. 13: Box Rotation Visualization

(a) (b) (c) (d) (e)

Fig. 14: Cupstack Visualization
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