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APPENDIX

A. Real-World Experiment

1) Data Collection and Model Training: To perform real-
world dexterous grasping, we collect LEAP Hand Dataset
and XHand Dataset to train 7 (R, ) Grasp models inde-
pendently. We select 50 objects from ContactDB [1] and 28
objects from YCB dataset [2], applying DFC-based [3] grasp
optimization to generate grasping demonstrations. After fil-
tering, we obtain 7,800 grasp demonstrations for each hand
as the training dataset. Following the training setup in Sec.
IV-A, we train 7 (R, O) Grasp on the collected dataset and
evaluate its performance in real-world scenarios.

2) Real-world Deployment: First, we use AR Code [4] to
scan 10 novel objects for each hand. After camera calibra-
tion, we employ FoundationPose [5] to estimate the object
pose from monocular RGB-D input captured by an Intel
RealSense D435 camera. The point cloud input for each
object is then obtained by transforming the sampled point
cloud from the scanned 3D model into the world frame. To
avoid collision in the tabletop grasp setting, we randomly
sample an initial hand pose from top-down to right-side ori-
entations, while taking the sampled initial pose as guidance
during 7 (R, O) grasp synthesis. Then, we use MPLib [6] for
xArm motion planning to reach the desired end-effector pose.
For closed-loop grasping in dynamic environments, we place
the object on a conveyor belt and employ FoundationPose
tracking to continuously update its pose, repeating the above
process in real time.

3) Experiment Results: As shown in Tab. [l and Tab.
T (R, O) Grasp achieves an average success rate of 91% and
90% on XHand and LEAP Hand, respectively. Visualization
in Fig. [I] demonstrates that our method performs robust and
generalizable grasp synthesis on novel objects. Furthermore,
Fig. |2 indicates that the high inference speed of 7 (R, O)
Grasp enables closed-loop grasp synthesis, allowing it to
successfully capture moving objects on a conveyor belt.
Complete videos of real-world experiments are available on
the project website https://tro-grasp.github.io/.

Apple Bottle Cola  Cylinder Box
9/10 10/10 9/10 8/10 9/10

Orange Sauce Sponge Toy Spray Bottle
10/10 8/10 9/10 10/10 9/10

TABLE I: Real-world experiment results on XHand.

Chip Box Bottle Cola Cylinder Box
9/10 10/10 10/10 7/10 9/10
Orange Sauce Sponge Spray Bottle Toy
8/10 8/10 9/10 10/10 10/10

TABLE II: Real-world experiment results on LEAP Hand.

B. Network Architecture

1) VQ-VAE Encoder: In T(R,O) Graph, we leverage
the pretrained VQ-VAE encoder from [7] to partition object
patches and extract corresponding geometry tokens. The
object point cloud is first normalized within a unit sphere,
and then encoded by the pretrained encoder into P = 25
local geometry features {fC}Z , along with corresponding
patch center coordinates {c%}1 ;.

2) BPS Encoder: Since the number of point cloud varies
for each link, we employ Basis Point Set (BPS) [8] algorithm
to encode each link point cloud into a fixed-length geometric
feature. Point clouds of the dexterous hand with L links are
defined as {P7}L | in their respective local frames, where
each link point cloud is P = {pj1,...,pin,} € R™*3.
First, we normalize all points into a unit sphere:

Pij — n% Zj Dij
1 )
max;||pi; — 5 22, Pij|
Next, we randomly sample B = 124 points within the unit
sphere as the basis point set for all link point clouds:

B = [by,...,b5]", ||bj]] <1, Vj. (2)

pij = Vi, j. (1)

Then, the BPS feature can be formulated as the minimum
distance between the normalized link point cloud and basis
point set to represent the link geometry, which is then
encoded to link nodes as illustrated in Sec. III-A.

BPS(P[*) = [miny]|p;; — b1||,...,min;||p;; — bsl]]. (3)

3) Graph Denoising Layer: To predict noise on link node
from the noisy 7 (R, O) Graph, we employ a graph denoiser
composed of N = 6 layers, each consisting of one OR-
attention and one RR-attention block. Fig. [3] illustrates the
structure details of both attention blocks, where attention
mechanism aggregates information from graph nodes and
edges to update their representations.

C. Cross-embodiment Zero-shot Generalization

Since T (R, O) Grasp has only been trained on a limited
set of dexterous hands, directly performing zero-shot exper-
iments on a completely unseen hand is infeasible. Instead,
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Fig. 3: OR and RR attention block.
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creating derived embodiments from existing hands provides a
controllable way to approximate cross-embodiment zero-shot
generalization. Hence, we construct new hand embodiments
by modifying the link length and joint limits of Allegro, Bar-
rett, and ShadowHand. To assess the embodiment similarity,
we define link alignment Sy, and joint overlap S as:

L=l o i N il
SL—l_*le i 9 LZZl|j U],L (4)

where [; and [; denote the original and modified link
lengths, j; and j! are the corresponding joint ranges. We train
T(R,O) Grasp on the original embodiment of Allegro, Bar-
ret and Shadowhand, and evaluate it on their derived embodi-
ments. As illustrated in Fig. 4] 7 (R, O) Grasp achieves over
70% success rate on test hands with similarity > 0.5, high-
lighting the strong zero-shot capability of 7 (R, Q) across

dexterous hand embodiments with comparable geometries.
Notably, the current zero-shot performance is constrained by
the limited training embodiments. This suggests that, when
trained on a large-scale embodiment dataset, 7 (R, O) has
the potential to scale up to a foundation model for dexterous
grasping with strong zero-shot generalization.
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Fig. 4: Cross-embodiment zero-shot performance.

D. More Implementation Details

In this section, we provide more comprehensive details on
network architecture, training and inference.

1) T(R,O) Graph construction: For object nodes, the
pretrained VQ-VAE [9] encodes object point cloud into
P = 25 tokens with 64 dimensions, resulting in object
nodes NO e R25x(3+1+64) For link nodes, BPS features
along with link centers and scales are embeded to 128 di-
mensions. To allow parallel computing across embodiments
with different number of links, link nodes are zero-padded
to NE ¢ R?5x(6+128)  Consequently, the object-link edges
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Fig. 6: Visualization of conditioned grasp synthesis: red arrow denotes the direction of grasp guidance.

and link-link edges take the forms EOF ¢ R6x25%25 apd
ERE ¢ R6X25x24/2 " respectively.

2) Training: During training, we adopt a linear scheduler
for the noise variance ranging from Sy, = 1 X 10~ to
Bmax = 0.02 with T' = 1000 diffusion steps in total. 7 (R, O)
Grasp model is trained for 300 epochs with Adam optimizer.
The initial learning rate is set to 1 x 10™* and decays by a
factor of 0.8 every 20 epochs. Position and rotation noise
loss weights are set to vy, = ¥, = 1.0.

3) Inference: For both unconditioned and conditioned
grasp synthesis, we follow DDIM [10] diffusion strategy to
sample M = 20 steps for inference. To encourage grasp
diversity, we set A = 0.2 to inject random noise during
inference. In conditioned grasp synthesis, the strength of
orientation guidance is formulated as:

i

oM

where M is the total number of inference steps. The sched-
ule s(t) preserves diffusion diversity in the early steps, while
encouraging the generated grasp to follow the orientation
guidance in the later steps.

s(t) =05sin(=——), i=1,..., M. )

E. More Visualization

We provide more visualization on unconditioned and
conditioned grasp synthesis of 7 (R,O) Grasp in Fig.

and Fig. [6] respectively. Our model consistently produces
accurate dexterous grasps on novel objects, while diverse
orientation guidance enhances grasp diversity.
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